Laboratoire de Physique des Interfaces et des Couches Minces

CNRS - École polytechnique - Institut Polytechnique de Paris

Fundamentals of Mueller polarimetry

Written by : Enrique Garcia-Caurel

Research on Fundamental Mueller matrix Algebra and Matrix Decompositions

Our Motto: Theory for the experiments, not theory for the theory

  • The purpose of this activity is the development of the Mueller matrix algebra and the elaboration of  tools useful for the phenomenological  interpretation of polarimetric measurements.
  • We investigate new and suitable matrix decompositions of experimentally obtained Mueller matrices.
  • Matrix decomposition strategies can be divided in three groups: Sum, Product and Differential decompositions.
  • Matrix decompositions are adapted to different measurement configurations (reflection or transmission) and enable the characterization of complex optical structures in terms of physically meaningful polarization parameters (diattenuation and retardance).
  • Matrix decompositions are equally applicable to both spectroscopic and imaging Mueller matrix data.

Useful references

  1. José Jorge Gil, Razvigor Ossikovski (book) Polarized Light and the Mueller Matrix Approach, CRC Press (2nd ed. 2022) d.o.i.: 10.1201/9780367815578
  2. Razvigor Ossikovski, Mehmet Ali Kuntman, Oriol Arteaga, Anisotropic integral decomposition of depolarizing Mueller matrices, OSA Continuum 2, 1900 (2019) d.o.i. : 10.1364/OSAC.2.001900
  3. Razvigor Ossikovski, Differential matrix formalism for depolarizing anisotropic media, Opt. Lett. 36, 2330 (2011) d.o.i.: 10.1364/OL.36.002330

Impact of Partial Coherence on Polarimetric Measurements

  • Partially coherent light-matter interaction results in depolarizing Mueller matrices containing not only polarization but also depolarization parameters.
  • Understanding the  sample-instrument interaction responsible for the phenomenon of partial coherence taking place during the polarimetric measurement.

Useful references

  1. Razvigor Ossikovski, Kurt Hingerl, General formalism for partial spatial coherence in reflection Mueller matrix polarimetry, Opt. Lett. 41, 4044 (2016) d.o.i.: 10.1364/OL.41.004044
  2. Kurt Hingerl, Razvigor Ossikovski, General approach for modeling partial coherence in spectroscopic Mueller matrix polarimetry, Opt. Lett. 41, 219 (2016) d.o.i.: 10.1364/OL.41.000219
  3. Razvigor Ossikovski, Oriol Arteaga, Sang Hyuk Yoo, Enrique Garcia-Caurel, and Kurt Hingerl, Opt. Lett. 42, 4740 (2017) d.o.i.: 10.1364/OL.42.004740

Contact: Prof. Razvigor Ossikovski –